Decomposable symmetric designs
نویسندگان
چکیده
The first infinite families of symmetric designswere obtained fromfinite projective geometries, Hadamardmatrices, and difference sets. In this paper we describe two general methods of constructing symmetric designs that give rise to the parameters of all other known infinite families of symmetric designs. The method of global decomposition produces an incidence matrix of a symmetric design as a block matrix with each block being a zero matrix or an incidence matrix of a smaller symmetric design. The method of local decomposition represents incidence matrices of a residual and a derived design of a symmetric design as block matrices with each block being a zero matrix or an incidence matrix of a smaller residual or derived design, respectively. © 2006 Elsevier B.V. All rights reserved.
منابع مشابه
On the decomposable numerical range of operators
Let $V$ be an $n$-dimensional complex inner product space. Suppose $H$ is a subgroup of the symmetric group of degree $m$, and $chi :Hrightarrow mathbb{C} $ is an irreducible character (not necessarily linear). Denote by $V_{chi}(H)$ the symmetry class of tensors associated with $H$ and $chi$. Let $K(T)in (V_{chi}(H))$ be the operator induced by $Tin text{End}(V)$. Th...
متن کامل3-symmetric and 3-decomposable geometric drawings of Kn
Even the most super cial glance at the vast majority of crossing-minimal geometric drawings of Kn reveals two hard-to-miss features. First, all such drawings appear to be 3-fold symmetric (or simply 3-symmetric). And second, they all are 3-decomposable, that is, there is a triangle T enclosing the drawing, and a balanced partition A,B, C of the underlying set of points P , such that the orthogo...
متن کاملFlag-transitive point-primitive $(v,k,4)$ symmetric designs with exceptional socle of Lie type
Let $G$ be an automorphism group of a $2$-$(v,k,4)$ symmetric design $mathcal D$. In this paper, we prove that if $G$ is flag-transitive point-primitive, then the socle of $G$ cannot be an exceptional group of Lie type.
متن کاملGRADUATE SCHOOL OF MATHEMATICAL SCIENCES KOMABA, TOKYO, JAPAN CLASSIFICATION OF DISCRETELY DECOMPOSABLE Aq(λ) WITH RESPECT TO REDUCTIVE SYMMETRIC PAIRS
We give a classification of the triples (g, g′, q) such that Zuckerman’s derived functor (g,K)-module Aq(λ) for a θ-stable parabolic subalgebra q is discretely decomposable with respect to a reductive symmetric pair (g, g′). The proof is based on the criterion for discretely decomposable restrictions by the first author and on Berger’s classification of reductive symmetric pairs.
متن کاملOrthogonal Tensor Decomposition
In symmetric tensor decomposition one expresses a given symmetric tensor T a sum of tensor powers of a number of vectors: T = v⊗d 1 + · · · + v ⊗d k . Orthogonal decomposition is a special type of symmetric tensor decomposition in which in addition the vectors v1, ..., vk are required to be pairwise orthogonal. We study the properties of orthogonally decomposable tensors. In particular, we give...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electronic Notes in Discrete Mathematics
دوره 15 شماره
صفحات -
تاریخ انتشار 2003